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Abstract

In this paper, we develop machine learning techniques to
identify unknown printers in early modern (c. 1500–1800)
English printed books. Specifically, we focus on matching
uniquely damaged character type-imprints in anonymously
printed books to works with known printers in order to pro-
vide evidence of their origins. Until now, this work has been
limited to manual investigations by analytical bibliographers.
We present a Contrastive Attention-based Metric Learning
approach to identify similar damage across character image
pairs, which is sensitive to very subtle differences in glyph
shapes, yet robust to various confounding sources of noise
associated with digitized historical books. To overcome the
scarce amount of supervised data, we design a random data
synthesis procedure that aims to simulate bends, fractures,
and inking variations induced by the early printing process.
Our method successfully improves downstream damaged type-
imprint matching among printed works from this period, as
validated by in-domain human experts. The results of our ap-
proach on two important philosophical works from the Early
Modern period demonstrate potential to extend the extant his-
torical research about the origins and content of these books.

Introduction
A complete understanding of the content of surviving histori-
cal works requires knowledge of the context of their printing.
This has long been acknowledged in the humanities, giving
rise to analytical bibliography, where physical evidence from
printed books is used to understand their means of production,
revealing incentives for their publication as well as cultural
diffusion of language and knowledge. One of the main kinds
of such physical evidence is character type-imprints pressed
from damaged type pieces. These anomalous type pieces,
when linked across printed works, can reveal which works
came from the same printing apparatus, as depicted in Fig-
ure 2. Historians have, for example, leveraged the analysis
of damaged type-imprints as a critical tool in identifying and
studying clandestine printers who withheld their identities to
avoid harsh penalties under censorship laws (Adams 2010;
Como 2018; Warren et al. 2020, 2021).

In this paper, we develop a computational model of the
same analytic techniques used by bibliographers. Our method
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Figure 1: A depiction of the neural architecture behind Con-
trastive Attention-based Metric Learning (CAML), which
we train to identify pairs of damaged type-imprints in early
modern books that have similar damage and therefore likely
originate from the same damaged piece of metallic type and
printing apparatus. Our model uses a joint attention mech-
anism to attend to residual convolutional features after a
template feature map has been subtracted from both inputs.

automatically compares type-imprint extractions across in-
dividual books, or larger collections of books, identifying
pairs of damaged type-imprints that match one another and
therefore likely originate from the same, damaged piece of
metallic type. Our approach enables computational biblio-
graphical analysis that has the potential to scale far beyond
the limits of manual analyses – for example, to the tens of
thousands of censored early modern works that are of interest
to social, cultural, and intellectual historians.

Matching damaged type-imprints across texts is challeng-
ing, since the variation in scale, position, font, and inking in
scans of printed characters generally dominates the minute
deviations due to localized damage that are of actual interest,
as shown in Figs. 3 & 6. We present a Contrastive Attention-



based Metric Learning approach to identify similar damage
across type-imprint pairs. Due to the dearth of training data
consisting of matching damaged types, we design a special-
ized data generation process informed by human experts that
aims to simulate bends, fractures, and inking variations in-
duced by the early printing process. This lets us produce
synthetic training data of image pairs with realistic match-
ing damages. Then we develop a convolutional neural ar-
chitecture that uses an attention mechanism for localized
comparison of character pairs. By fitting this model to our
synthetic data, we learn a metric appropriate for identifying
similar, damaged type-imprints that generalizes to real data.
Our model is sensitive to very subtle glyph deformations, yet
robust to various confounding sources of noise associated
with digitized historical books. We evaluate our approach
against other common methods for image comparison on a
downstream damaged type-imprint matching dataset of En-
glish early modern (c. 1500–1800) books, a period when
print censorship was prevalent. Our model’s inferences are
consistent with and support the findings of recent, manual
bibliographical analyses of Areopagitica (Warren et al. 2020)
and Leviathan Ornaments (Warren et al. 2021). In a deploy-
ment case study, a broader set of type from Leviathan Orna-
ments is matched against type from 138 candidate books and
evaluated by an expert bibliographer. Results suggest that
our method can help scale printer attribution to the tens of
thousands of anonymously printed early modern documents.

Related Work
Our work fits into a related line of work on computational
analysis of historical documents under limited supervision—
including, for example, unsupervised optical character recog-
nition (OCR) techniques suited to early modern English his-
torical documents such as Ocular (Berg-Kirkpatrick, Durrett,
and Klein 2013a; Berg-Kirkpatrick and Klein 2014). Gar-
rette et al. (2015) later proposed an OCR solution for code-
switched historic texts using Ocular, followed by advances in
improved orthographic transcriptions for OCR (Garrette and
Alpert-Abrams 2016). Separately, Liu and Smith (2020) in-
vestigated code-switching in historic German books with ap-
plications to OCR. Neural techniques, such as the LatinBERT
masked language model for classical Latin language process-
ing (Bamman and Burns 2020), and Lacuna for low-resource
document transcription for English and Arabic-script docu-
ments (Vogler et al. 2022), both utilize self-supervised pre-
training to adapt to limited supervised resources. In this work,
we instead overcome data scarcity by synthesizing our data
using a random augmentation procedure.

Recent work has also used machine learning to discover
the origins of historical texts. Assael et al. (2022)’s Ithaca
uses deep neural networks for geographical and chronolog-
ical attribution of ancient Greek inscriptions with the help
of historians. Closest in theme to our work is Ryskina et al.
(2017)’s automatic compositor attribution, which considers
the bibliography of the document by predicting the composi-
tors of Shakespeare’s First Folio using orthographic and spac-
ing features. While these approaches primarily focus on the
text in the documents for computational analysis, we focus
on often-overlooked but important complementary features

Figure 2: Although the three damaged type-imprints from
Warren et al. (2020)’s study, in red, occur with different
inking levels and imaging variation, the letters were pressed
using the same type piece, evident from the corresponding
damage at the top of the glyphs, suggesting that the respective
books share the same printer. We are the first to approach this
problem using machine learning, which could scale printer
de-anonymization to tens of thousands of such books.

related to the visual appearance of books for computational
attribution of print.

Our work also draws from a body of work on metric learn-
ing over images using contrastive approaches and data aug-
mentation (Hadsell, Chopra, and LeCun 2006; Musgrave,
Belongie, and Lim 2020; Weinberger and Saul 2009; Zhai
and Wu 2019) which are commonplace for many computer
vision tasks like self-supervised learning of image represen-
tations (Chen et al. 2020), image classification, and object
localization (Ki et al. 2021). While these approaches have
been shown to be effective for capturing high-level features
that characterize semantic variation among images, they are
not suitable wholesale for our purpose which is to compare
pairs of images based on subtle shape variations while re-
maining invariant to other dominant sources of variation.

Early Modern Print and Damaged Type Pieces
We focus on a data domain that is highly relevant to the cul-
tural analysis of censorship. From the advent of the printing
press in the mid-1400s through the 18th century, printers
declined to attach their names to tens of thousands, or about
25%, of all known books and pamphlets. Reasons included
controversial content, censorship laws, and piracy (Como
2007; Norbrook 1994; Raymond 2017; Woodfield 1991; Tow-
ers 2003; McCabe 1981; McCoog 2016). As early as 1960,
analytical bibliographers realized that distinctively damaged
metal type pieces used to produce the inked type-imprint on
a book’s page could be recorded and compared across pub-
lications to uncover the hidden identities of printers (Mills
1960). Essentially, once a metallic type piece is damaged,
whether by being dropped on the ground, warped under pres-
sure, or some other means, the type-imprints produced by



Figure 3: Bending and fracturing, the two main kinds of dam-
age to type pieces in printed works, can be visually observed
via the type-imprint left on a book’s page. Three kinds of
inking variation may complicate damage matching by either
resembling or occluding damage. Under/over-inking gener-
ally appear evenly throughout a type-imprint, while swelling
is more local. Example match groups are shown on right.

the type piece become unique like a fingerprint as illustrated
in Figure 2 and the top of Figure 3. Manual forensic analy-
ses of these most distinctive aberration patterns—bends and
fractures, as well as other tell-tale cues identified by bibliog-
raphers, have produced evidence connecting anonymously
printed works with known printers (Weiss 1992; van den
Berg and Howard 2004; Achinstein and Burton 2013; Gar-
rett 2014; Bricker 2016; Lavin 1972; Adams 2010; Como
2012). For example, Charlton Hinman’s pioneering work in
the 1960s exhaustively compared all letterforms across 55
copies of Shakespeare’s First Folio using careful notetak-
ing methods to uncover the collation process (Turner 1966;
Hinman 1963).

Recent printer attribution work uses digital reproductions
in addition to physical copies (Adams 2010; Como 2018).
Warren et al. (2020, 2021) go one step further, employing
Ocular (Berg-Kirkpatrick, Durrett, and Klein 2013b) histor-
ical OCR for automatic extraction of type-imprint images,
which they later manually match to uncover the printers of
important books printed in the early modern period.

This type-imprint matching process remains the most labor-
intensive part of the pipeline as every type-imprint image
must be compared against an entire set of other type-imprint
images. In this work, we focus on developing automatic com-
putational techniques that aim to scale the matching process
by filtering the search space and suggesting candidates of
matching damaged type-imprints across large collections of
digitally archived books.

Our Computational Approach
We use a neural model to learn a distance metric over pairs
of type-imprint images. The metric learning framework fa-
cilitates treatment of matching as a search and rank problem,
in which we embed a type-imprint and use it to query and
retrieve the top-k most similarly damaged type-imprints from
the dataset. Supervised training consists of learning to embed
matched pairs comparably and unmatched pairs disparately
using a margin loss. However, this modeling approach faces
two main hurdles:

1. Spurious sources of deviations between type-imprints,
such as difference in scale, position (Fig. 6), inking (Fig 3),

font variation, character class due to imperfect historical
typesetting and OCR errors, and digital imaging noise,
mislead traditional metric learning approaches from iso-
lating variation due to the shape of the underlying type
pieces.

2. The lack of labeled data complicates learning in the
supervised metric learning framework. Collecting high
quality image scans of early modern books requires ac-
cess to rare book libraries, identifying and annotating
anomalous damage is labor-intensive, and manual pair-
wise comparison of every type-imprint is unfeasible at
scale.

In the following sections, we describe how we overcome
these challenges. First, we present our novel metric learning
model (Figure 1), which is able to overcome the confounding
noise. Its restricted attention mechanism is well-suited to
identifying shared local deviations in a pair of candidate
images. Then, after describing the preparation of a collection
of character type-imprint images, we describe how, by using
domain-specific knowledge about the type piece damages,
we generate realistic synthetic pairs of matching damaged
type-imprints to train our model using a supervised objective.

Contrastive Attention-based Metric Learning
As seen in the three matching character type-imprints in Fig-
ure 2, identical type-imprints can be most easily recognized
by the corresponding local deformations to character shape.
We use an attention mechanism to allow our model to jointly
focus on corresponding locations across a pair of images.
We introduce our Contrastive Attention-based Metric Learn-
ing (CAML) model, shown in Figure 1, which computes a
weighted attention map from the convolutional features of a
type-imprint image pair to allow for more local comparison.
At its core, our model takes as input a pair of type-imprint
images we are interested in comparing and outputs a dis-
tance between the pair. As shown in Figure 1, X is an image
of a type-imprint of G with local damage at the bottom of
the glyph and X+ is another type-imprint image we would
like to compare to. In this case, X+ also exhibits similar
local damage as X , so the desired output of the model, the
L2-distance between the final image embeddings e and e+,
should be small.

Template feature-map residuals Most observable damage
on a type-imprint image manifests as local deviations from
an exemplary character shape. In order to aid the model in
identifying this local deviation from a standard, undamaged
character shape, we additionally input a grayscale template
image Xt computed via the pixel-wise average over all train-
ing set images of the character. We pass these three images
through a deep convolutional neural network to get output
feature representations F, F+, and F t ∈ Rd×h×w of the
input images and the template image. Here h and w corre-
spond to the height and width of the activations/feature-maps
and d is the depth of the feature-maps. We encourage the
model to focus on deviation between input features and tem-
plate features by computing residual feature-maps F̄ and
F̄+ ∈ Rd×h×w via an element-wise difference between the



Figure 4: Our expert-informed random data augmenta-
tion procedure models realistic bends, fractures, and
inking to generate paired training data for learning to
match damaged type-imprints. We sample two random
undamaged images (top), perturb them with either a
similar bend or a similar fracture (e.g., fracture, high-
lighted in green), and apply potentially multiple kinds
of random inking noise independently to each image
(bottom, thick green border). MD
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input images’ feature-maps and the template’s feature-map:
F̄ := (F − F t) and F̄+ := (F+ − F t).

Contrastive Attention Mechanism Assuming that images
X,X+, Xt have already been aligned (see Dataset section)
so that the same pixel location in both images represents the
same location on the type-imprint, we would like our model
to be able to compare and contrast the same specific visu-
ospatial features between residual feature-maps F̄ and F̄+.
Our proposed contrastive attention mechanism, composed
of a multi-layer perceptron (MLP in Fig. 1) that computes
an attention map α̂ ∈ Rh×w on the concatenated residual
feature-maps [F̄ ; F̄+], enables this comparison. Each value
α̂ij of α̂ represents a score for each spatial location, or “fea-
ture pixel”, on the joint location dimension of the residual
feature-map: α̂ij = MLP([F̄∗ij ; F̄

+
∗ij ]).

After normalizing these attention scores, we obtain a
weighed attention map α ∈ Rh×w over such feature pix-
els. We compute the final d-dimensional output image em-
beddings e and e+ by attending to F̄ and F̄+ respectively:
e :=

∑
ij αijF̄∗ij , and e+ :=

∑
ij αijF̄

+
∗ij . Finally, the

model returns the Euclidean distance between the embed-
dings ∥e− e+∥2, representing the distance between the type-
imprint image pair.

Training CAML We train CAML with the popular triplet
loss (Weinberger and Saul 2009), which operates on an an-
chor/query embedding e along with the embedding e+ of a
candidate image that matches the anchor and a non-matching
candidate image’s embedding e−. This results in the follow-
ing loss: max

(
∥e−e−∥2−∥e−e+∥2+m, 0

)
, which focuses

on minimizing the Euclidean distance between the anchor
and the positive matching images’ embeddings, and maximiz-
ing the distance between the anchor and the non-matching
images’ embeddings, such that the positive and negative ex-
amples are separated by a margin of at least m. We sample
negative examples uniformly at random from our batch.

Synthesizing Damaged Type-Imprint Pairs
Given pairs of known matches and non-matches, we can train
CAML. However, annotated data of this form is extremely
sparse and difficult to collect. In this section, we describe

how we first create a small collection of unpaired damaged
character type-imprint images from early modern books of
both known and unknown printer origins. Then we describe a
random automatic process for synthesizing paired supervised
match data from this collection for training CAML.

Extracting Type-Imprint Images from Books
We obtain page image scans from 38 different English books
printed from the 1650s–1690s by both known and unknown
printers of historical interest. The materials were printed
mainly in London after its civil war when the explosion of
news, pamphlets, and cheap print are said to have led to
England’s ‘reading revolution’ (Como 2018; Sharpe 2000;
Achinstein 1994; Raymond 2003; Zaret 2000). In contrast
to resources like Early English Books Online (EEBO), used
in Mak (2014), our images are higher resolution to facilitate
fine-grained comparison of anomalous type-imprints.

Next, we use the Ocular OCR system (Berg-Kirkpatrick,
Durrett, and Klein 2013a) to extract segmented character im-
ages from the color page photographs and select a subset of
16 capital letters, which tend to exhibit the most recognizable
damaged compared to their relatively infrequent occurrence
in printed English. Then, we align the resulting character
images using learned rotation, offset, size, and scale random
variables from Goyal et al. (2020)’s recently proposed gener-
ative font clustering model for typographical analysis of early
modern printing, which significantly reduces the variance in
size, offset, skewness, and rotation (illustrated in Figure 6).

Supervised Data via Paired Damage Synthesis
In order to train our matching system, we require a dataset
consisting of pairs of matching damaged characters — we
propose a technique for synthesizing such pairs. Inspired by
work in learning disentangled representations of morphologi-
cally perturbed MNIST images (Castro et al. 2019) and syn-
thetically shifted images of characters from historical books
for font discovery (Goyal et al. 2020), we design a detailed
random process for perturbing character images with paired
realistic damage and inking variation observed in printing
press era books. The generating process is depicted in Fig. 4
and described in this section.



First, we sample two random, undamaged letter type-
imprint images from different books from the annotated col-
lection described above (as depicted at the top of Fig. 4).
By sampling the type-imprint images from different books
instead of using the same book or even the same, duplicated
character type-imprint image,1 we force our model to discrim-
inate between the synthesized local damage patterns instead
of specious features arising from the book scanning process
itself. We take the union of the sampled type-imprint pair and
extract its skeleton (henceforth referred to as union skeleton),
which makes it easier to produce a bend/fracture on the same
location of the pair.2 We randomly apply one of two kinds
of damage–bends or fractures–followed by inking noise, as
described below.

Bends In the case of a bend (Fig. 3, top left), we first sam-
ple the length of the segment to be bent and the amount
to shift the segment (both as relative percentages of skele-
ton height) from the respective character class distributions
(Fig. 4, right). Next, we iteratively sample for the best set
of midpoints and endpoint locations on the union skeleton
and map them back to the original images using the nearest
neighbor on each skeleton. We morph the sampled segment
length by drawing a Bezier curve between the midpoint and
a shifted midpoint computed with the sampled shift amount.
We increase the bent skeleton’s thickness until it reaches the
unbent character’s thickness, as measured by a Euclidean
distance transform.

Fractures We sample a center point on the union skeleton
and map it back to the original images in a similar fash-
ion as in the bends. For each type-imprint in the pair, we
locally erode the image by a sampled percentage of its mea-
sured mean character thickness in a small window around
the center point on the character skeleton. Then, we sample
a random angle and draw a circular brush stroke through
the center point at this angle, similar to Castro et al. (2019),
with sampled thickness proportional to mean character thick-
ness. Finally, the image is locally dilated back to its original
thickness amount. By placing the brush stroke between local
erosion/dilation, the sharp edges introduced by the circular
brush stroke are removed and the damage looks less artificial.

Inking In early printing press era books, natural variation
in a type piece’s inking level can cause significant visual
differences in type-imprints produced from the same under-
lying metal type piece, as shown in Fig. 3. Under-inking can
create superficially similar effects as damage, whereas over-
inking can occlude actual damage to the metal type piece.
Either the whole image could be over or under-inked or lo-
cal sections of glyphs could exhibit inking variations. We
over- or under-ink both undamaged and artificially damaged
character type-imprint images independently by dilating or
eroding the image by a sampled percentage amount of the
type-imprint’s mean thickness, which evenly thickens or thins
the character (Fig 4, left). Similar to Castro et al. (2019), for
local inking, we perturb a character type-imprint image by

1In fact, training on paired data synthesized from the same char-
acter type-imprint image does not generalize well to real datasets.

2We use scikit-image morphology (van der Walt et al. 2014).

first uniformly sampling a random location on the character
skeleton, sampling a strength magnitude to increase inking,
and radius amount, followed by warping of image coordi-
nates around the sampled location. Modeling these inking
variations in our perturbation generating process exposes our
learned matching models to this deceptive real-world noise.

Setting Parameters Instead of learning these damage and
inking parameters, which would be difficult given the lim-
ited labeled data, we consult humanities scholars with expert
domain knowledge. We set parameters of the truncated nor-
mal distributions controlling the image operations (shown in
Fig. 4) through multiple iterations of tuning, sampling, and
evaluation. In each round, we display comparisons between
hundreds of samples of real and synthesized damages and
have annotators evaluate the fidelity of the generated samples.

Experimental Setup
In this section, we first describe the real-world datasets con-
taining a small amount of manually identified matches and
damaged types in previous bibliographic studies that we use
to evaluate our approach on downstream matching of type-
imprint images. We use these datasets to construct various
scenarios, ranging from highly optimistic to more realistic
settings, pertaining to the quality of the candidate sets we
query against for our matching experiments. Then, we present
strong baselines that are prevalent for computational image
comparison for empirical comparison against our proposed
approach.

Ground Truth Evaluation Datasets
We use two different hand-curated datasets from recent bibli-
ographical studies that manually identified and matched dam-
aged type-imprints for attribution of two major early mod-
ern printed works (Warren et al. 2020, 2021). Per-character
dataset statistics are presented in Table 4.

Areopagitica validation set We collect a small validation
set of the manually identified type-imprint matches used in
the study for printer attribution of John Milton’s anonymously
printed Areopagitica (Warren et al. 2020). Specifically, we
focus on four uppercase characters D, F, G, and M whose
damaged type-imprints were compared across books from
known printers of interest for this study. Overall, this dataset
contains 128 total match groups with 159 pairwise queries.

Leviathan Ornaments test set We construct our test set
from the expert-curated set of matches manually identified in
a recent bibliographical study, in which Warren et al. (2021)
established that the book was printed in a single print shop by
John Richardson in 1695–1696, thus refuting the attribution
of Malcolm (2008) to a different printer, John Darby in earlier
work by amassing evidence from damaged type-imprints
matched manually within Leviathan Ornaments and across
other books by known printers from the suspected time period
of its printing. Overall, this dataset contains 217 total match
groups with 858 pairwise queries.

For the purpose of damaged type-imprint retrieval, we
treat the known damaged type-imprints in Areopagitica and
Leviathan Ornaments as queries against which we attempt



to retrieve the matching damaged type-imprints from candi-
date sets of interest. For the Areopagitica validation set, we
simply match against the other queries—i.e. every candidate
is a match for at least one query. Note, this setup is unre-
alistically easy, and as we will see in experiments, simple
baselines do unrealistically well. However, we find it useful
to leverage Areopagitica for validation and early stopping.
Leviathan Ornaments represents our main test evaluation
set. Here, we conduct experiments with two different setups
that include different types of realistic candidates sets: (1)
Strong negative (Lev-Strong), in which the candidate set is
composed of both ground truth positive matches and 1000
random type-imprint images from other books printed by
Darby and Redmayne, who were both suspected of being
the printer behind Leviathan Ornaments until Warren et al.
(2021)’s study, and (2) Mix negative (Lev-Mix), where the
candidate set consists of both ground truth positive matches,
500 random images from Lev-Strong, and 500 random im-
ages from books printed by Robert Everingham, who used
type pieces in a different font and was never considered to be
involved in the printing of Leviathan Ornaments. These test
setups are more realistic because they contain a larger variety
of negative candidates and are based on the actual data bib-
liographers have combed through to identify matches. The
latter setting, Lev-Mix, is possibly the most difficult because
it includes the most variability in negative examples, making
spurious matches using simple methods more likely.

Baseline Models
In order to show the effectiveness of our approach on match-
ing subtle damages between type-imprints in the presence
of multiple confounding sources of noise, we compare it to
other prevalent approaches for image comparison.

Image L2 Distance (L2) Instead of learning a metric over
the set of training images, this method compares the aligned
(see Dataset section) query images to the candidate images
by computing the Euclidean distance between the two images
and outputs a ranked list of candidates for each query image.

Embedding Triplet Loss (Emb) In a large metastudy on
metric learning for images, Musgrave, Belongie, and Lim
(2020) report that classic embedding based triplet losses are
highly effective and closely match the state-of-the-art on
metric learning tasks. Therefore, we compare our method
to an embedding based triplet loss approach as described in
Weinberger and Saul (2009). This approach is trained with the
same loss as CAML and is similar to the approach described
in the CAML section, but the images (anchor, match, non-
match) for triplet loss training are processed independently of
each other by a CNN with no attention mechanism to produce
their respective embeddings.

For fair comparison, the architecture, artificial data cre-
ation and negative mining strategies are the same as our
approach. The one major difference between our approach
(CAML) and this baseline approach is that our model con-
siders both the anchor and the candidate jointly via the de-
scribed attention mechanism to yield the relevant embeddings
whereas this baseline learns the embeddings for each triplet

Method Syn Valid Areo Lev-Strong Lev-Mix

L2 Aligned 5.53 43.21 39.91 40.99
Stacked BCE 4.62 1.78 1.10 0.96
Emb 5.72 40.76 33.53 33.00
CAML 35.50 39.42 58.15 56.08

Table 1: Recall @ 5 results micro-averaged over 4 character
classes for Areopagitica ground truth validation set, and 16
character classes for both the synthetic validation set and
Leviathan Ornaments ground truth test set. Both the Emb and
CAML models use convolutional residual features.

image independently. As observed in the results, this differ-
ence makes our model more suitable for metric learning over
character images with very subtle local variation.

Stacked BCE To investigate the effect that our attention-
based architecture design and contrastive loss function has on
performance, we train the same convolutional neural network
feature extractor to classify positive and negative pairs (Zhai
and Wu 2019) of images with a binary cross-entropy loss.
Instead of encoding the 1-channel images separately, we stack
the images on separate channels before inputting to the CNN.

Quantitative Results
In this section, we describe our quantitative results on the
ground truth evaluation data presented in Experimental Setup.
We report all-pairs Recall@k=5 micro-averaged over the
character classes in each dataset configuration in our eval-
uations so every damaged type-imprint serves as the query
image once. We train each model for 60 epochs and early
stop using the best Areopagitica validation set recall.

In Table 1, we compare results using the L2 baseline on
the aligned images, Stacked BCE classifier, Triplet Embed-
ding model, which is equivalent to CAML without the spatial
attention mechanism, and our proposed CAML method. First,
we observe that CAML outperforms the nearest baseline ap-
proach by at least 15–18 points on recall @ 5 on the Leviathan
Ornaments test settings. The next closest methods for this set-
ting are the L2 baseline and the Emb model, which both tend
to lack the ability to focus on local damage similarities. We
hypothesize that character positioning and inking dominates
most of the distance for these methods. This explanation is
plausible when considering the poor synthetic validation per-
formance, which is a dataset consisting of type-imprints from
different underlying fonts to force models to focus on local
similarities in lieu of font shape. Also, this is supported by the
high recall on the Areopagitica validation set—all of the char-
acters in it are hand-identified ground truth matches meant to
be as similar as possible to make a convincing bibliographi-
cal argument (Warren et al. 2020) and no other misleading
candidate images need to be filtered out. The Stacked BCE
model, while capable of driving its classification loss near
zero on the training set, has a lot of difficulty ranking unseen
data and performs worst of all methods.

Ablation We perform two kinds of ablative studies on our
model. The first study (Table 2) concerns with how we obtain
the residuals of the image representations through subtracting
the template character features. We compare 3 settings: (1)



Residual Syn Valid Areo Lev-Strong Lev-Mix

None 50.62 33.63 62.88 61.78
Input 47.62 38.75 52.33 49.18
CNN 45.00 43.88 67.81 64.79

Table 2: Micro-averaged recall @ 5 independent ablation
study comparing different residual methods in the CAML
model. Results on D, F, G, M character subset.

no template residual, (2) an input residual where the tem-
plate image pixels are subtracted from each input image’s
pixels, and (3) CNN feature residual (our final model), where
the learned template image’s CNN features are subtracted
from the learned input image’s CNN features before perform-
ing spatial attention. We observe that providing information
about template shape of the character class is important for
our model’s success as shown by the superior performance of
the CNN residual variant. Interestingly, not using any residu-
als performs better than subtracting the templates from the
input image, suggesting that the input residual variant suffers
from information loss before CNN feature computation—
perhaps due to misaligned characters or inking variation.

Additionally, we perform a small ablation analysis to study
training CAML without global inking synthesis such as Thin-
ning and Thickening from Fig. 4. Compared to our best model
which uses this augmentation, most of the decrease in per-
formance is on synthetic validation (3 points R@5) and the
Lev-Mix setting (0.68 R@5).

Figure 5: Visualization of attention weights in CAML from
three query/candidate pairs.

Attention Visualization In Figure 5 (above), we visualize
the spatial attention weights on a few top-ranked G type-
imprint images from the Lev-Mix test set. We compare two
pairs (left, middle) using the same ‘Query 1’, while the third
pair (right) uses a different ‘Query 2’. The highest attention
weights are clearly located in locations with noticeable dam-
age, along with other areas that help the model differentiate
glyph shapes. Weights appear mostly similar for the pairs
with the same query, but adapt drastically for the other pair.

Deployment Study: CAML for Attribution
For analyzing how our model can aid bibliographical re-
search, we design a deployment and expert evaluation case
study to confirm the manual printer attribution of Leviathan
Ornaments (Warren et al. 2021). Using an unannotated set
of 138 books scanned by various libraries and printed by 4
suspected printers of Leviathan Ornaments and 1 unrelated
printer, we aim to simulate the entire process of human-in-
the-loop printer attribution, from query selection to matching.
Until now, such a process has required much manual effort.

Query Selection and Matching First, we start with query
selection, which involves choosing hundreds of type-imprints

Printer Top-1 Top-5 Top-10
Lo Hi Lo Hi Lo Hi

Richardson 7 11 17 23 40 31
Richardson & Holt 0 0 2 0 2 0
Darby 13 3 21 7 28 9
Redmayne 0 0 0 0 0 0
Everingham 0 0 5 1 9 1

Table 3: CAML deployment findings aggregated across
matches for known printers on Leviathan Ornaments. Ex-
pert is asked to annotate both low (lo) and high (hi) confi-
dence matches returned by system. The most high confident
matches are bolded, confirming Warren et al. (2021)’s man-
ual attribution to the printer John Richardson.

exhibiting anomalous bends and fractures in Leviathan Orna-
ments, the anonymously printed book of interest. Instead of
manually identifying these by sorting through tens of thou-
sands of characters, we train a CNN-based classifier with
the same architecture as our matching models on thousands
of unpaired, labeled images from other 17th-century books
to rank all Leviathan Ornaments type-imprints by damage
intensity. An expert bibliographer then selects a few hundred
of the top results to create a query set of 246 images. Next,
using the L2 distance on CAML’s image embeddings, we
generate the top-10 ranked candidates for each query image
against a set of 518,891 total type-imprint images.

Annotation Findings We setup an annotation interface
and ask a bibliographical expert to annotate matching type-
imprints among the retrieved candidates as either not a match,
or as a high or low confidence match without access to
book/printer name or scoring information (see Appendix
for Fig. 7 and Annotator Feedback). In Table 3, we present
aggregated match counts by summing up the counts for each
printers’ books. Of the 246 unique damaged type-imprint
queries, at least one match was found in 80 of them (32.5%).
Among the suspected candidate printers, John Richardson
has the largest amount of high confidence matches. In con-
trast to John Darby, who Malcolm (2008) attributed the book
to, John Richardson has 22 more high confidence matches in
the top-10. While John Redmayne printed another clandes-
tine version of Hobbes’ Leviathan, zero matches surfaced in
our investigation. Robert Everingham’s books, which tend
to use different sets of fonts entirely, only surfaced a single
high match. Ultimately, evidence strongly suggests that John
Richardson did, in fact, print Leviathan Ornaments.

Conclusion
We demonstrate that machine learning can be successfully
applied to printer attribution by learning to match damaged
type-imprint images in early modern books. By attributing
early modern print at scale, we can begin to uncover the
hidden figures behind the tens of thousands of clandestinely
printed works from the period, which amounts to roughly
25% of documents. Ultimately, this translates into more op-
portunities to discover significant historical networks of early
print media involving printers, authors, and arguments.
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Title Char Match Groups Pairwise Queries

Areopagitica

D 38 57
F 33 47
G 40 44
M 17 11

Totals: 128 159

A 30 134
B 14 46
C 22 99
D 14 59
E 4 19
F 15 53
G 17 59

Leviathan H 8 19
Ornaments K 5 18

L 17 66
M 13 47
N 7 20
P 13 75
R 13 47
T 14 58
W 11 39

Totals: 217 858

Table 4: Per-character ground truth dataset statistics of
Leviathan Ornaments, which is the main test set used for
quantitative evaluation. Aggregates are reported at bottom.

Unaligned Raw  
Images

51

39

44

39

69

58

Aligned Images
58

42

58

41

58

42

Average

Figure 6: Effects of aligning character type piece type-
imprints standardizes their height/width, offsets, shear, &
rotation to a common size/orientation for more consistent
glyph comparison across models (Goyal et al. 2020).

Training Details
All models are built using a number of CNN ‘blocks’ contain-
ing 3 convolutional layers, separated by batch normalization
(Ioffe and Szegedy 2015) and ReLU non-linearities. Con-
volutional layers in the block all contain 128 filters each,
kernel sizes of 3, strides of 1, and padding of 1, such that
the only spatial dimension reduction is from the max pool-
ing layers with kernel size and stride size of 2 with no
padding. For Emb model, we use 4 blocks followed by a
flatten operation and linear layer with 2048-dimensional in-
put. Emb models use 128-dimensional image embeddings.
For CAML models, we use only 2 blocks in order to avoid
reducing the spatial resolution of the feature maps before
the attention operation. CAML’s Attention module is a 4-
layer MLP with hidden sizes of 256, 128, and 64 units sepa-
rated by Tanh activations. We use a batch size of 64, Adam

(Kingma and Ba 2015) with a learning rate of 0.0001 and grid
search over number of blocks {2, 3, 4, 5}, number of convo-
lutional layers per block {2, 3, 4, 5, 6}, CAML’s attention
softmax temperatures {0.1, 0.5, 1.0}, and triplet loss mar-
gins {0.1, 0.2, 0.3, 0.4, 0.5}. We find a margin of 0.3 to yield
consistently good performance across models. All hyperpa-
rameters are tuned on the Areopagitica validation set.

Annotator Feedback
In Figure 7, we show two rows from the expert annotation
task, which underscore how difficult type-imprint damage
identification can be. For example, all 5 of the first 5 C can-
didates include a break in the upper stroke indicating high
plausibility of matching the query image. Yet the bounding
boxes for the first two make it difficult to assess the Cs’ termi-
nals for comparison. The resolution on the first image is poor
and the binarization in the next two makes high confidence
difficult. The fifth one could very well be a match, yet the ink
doesn’t break as cleanly as it does in the query image so it
was not selected.

On the second row of Ds, the query contains a counter
(white space) that extends into the juncture of the stem, bowl,
and lower serif of the character. In this case, all of the results
contain such damage. However, the selected high confidence
matches appear thinner than the others. The one exception is
the second option from the Tillotson book, which could very
well be the same piece of type, but either the inking or some
other feature means the counter didn’t extend into the lower
bowl quite as prominently.



Figure 7: Selected results from annotation of our deployed system, in which an expert bibliographer must decide whether the
query character type-imprint image (in cyan, far left) matches any of the top-10 ranked candidate character type-imprint images
as scored by our model (right of the query). Matches annotated as ‘high confidence’ are shown in green.


